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Nonlinear reactive systems on a lattice viewed as Boolean dynamical systems
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We present a stochastic, time-discrete Boolean model that mimics the mesoscopic dynamics of the desorp-
tion reactionsA+A—A+S andA+A—S+S in a one-dimensional lattice. In the continuous-time limit, we
derive a hierarchy of dynamical equations for the subset of moments involving contiguous lattice sites. The
solution of the hierarchy allows to compute the exact dynamics of the mean coverage for both microscopic and
coarse-grained initial conditions, which turn out to be different from the mean field predictions. The evolution
equations for the mean coverage and the second-order moments are shown to be equivalent to those provided
by a time-continuous master equation. The important role of higher-order fluctuations is brought out by the
failure of a truncation scheme retaining only two-particle fluctuation correlations.
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[. INTRODUCTION the general case, these hierarchies cannot be solved in a
closed form. Suitable truncation techniques may then help to

When reactive processes take place in low-dimensionabvercome this difficulty.
spaces, the mean-fieldMF) laws of classical kinetics, in A more recent, very successful method of studying the
which each particle is assumed to interact with the system asvolution of low-dimensional reactive systems is based on
a whole, become questionable. In this simple one-particlé/onte Carlo(MC) simulationg 1], in which the microscopic
picture, information about special geometric constraints oktate of the system is updated at discrete time steps according
many—particle correlation effects is absent. However, theSﬁ) a given dynamicai rule. One of our goais in this paper isto
features become increasingly important as the dimensionalit¢stablish a link between the physics underlying this simula-
of the space decreases and may eventually give rise to tfonal approach and the ME formalism. To this end, we shall
crossover between universal macroscopic MF behavior angyrmulate mathematically the evolution law prescribed by
SpeCiﬁC, Strongly |attice-dependent behavior below a Criticaihe MC aigorithm as a Stochastic dynamicai System Whose
dimensiond. . The critical dimensiort is found to depend  state variables are Boolean occupation numbers for the state
on the characteristics of the suppgstich as average coor- of each lattice sitd2,3]. As we shall see, this cellular au-
dination numberand the stoichiometry of the reactive dy- tomaton(CA) model yields a set of moment equations simi-
namics, i.e., its degree of nonlinearity. lar to that obtained from a time-continuous ME.

The crossover phenomenon mentioned above is not spe- 5o far, most of the literature devoted to the effects of
cific to reactive systems, but is common to many other stagimensionality on reactive dynamics has focused on
tistical systems(interacting spins, random walks, 6tcTo  djffusion-controlled reactiong—6]. In these systems, devia-
understand its real nature, it is necessary to resort to a mokfyns of MFE behavior at low dimensions may be expected
refined description in which relevant fluctuation effects indue to the reduced effective mobility of the reactants. There
concentration and occupation number space can be agre, however, situations in which diffusion can be neglected
counted for. In view of the difficulties encountered by a full- within the time scale of interest, like, e.g., chemical reactions
scale microscopic analysis, one typically tries to devisen solid materials and certain radical isolation probleiis
“minimal” models that contain the necessary ingredients togych systems of immobile reactants constitute the object of
observe aSigniﬁcant departure of MF behavior at SUfﬁCientlyour Study in this paper. Cieariy, the absence of diffusion
low dimensions. A probabilistic, time-continuous approachreduces the ability of each particle to interact with all the
of this kind for a detailed Study of fluctuations is prOVided by others, thus driving the system further away from the appii_
master equatiofME) techniques in which the local dynam- capility conditions of MF theory. This effect is enhanced in
ics is specified by transition rates between different microthe presence of short-range interactions restricted to, say,
scopic states. In the ME approach, one is typically led to gearest neighbors and hard core exclusion not allowing more
set of evolution equations for the moments of the probabilitythan one particle per lattice sif8—12].
density, which can be taken as a starting point to compute More specifically, we will study the one-dimensioriaD)
the most characteristic macroscopic observables, generalljttice dynamics in two particular examples of nonlinear ir-

associated with the first low-order moments. However, if thereversible reactions associated with the cooperative desorp-
transition rates are nonlinear, the low-order moments will notjon systemgCDs)

obey closed equations but will rather be linked to the higher-
order ones by an infinite hierarchy of coupled equations. In
kr
A+A—A+S, cooperative partial desorpti¢@PD)
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kr selected site filled neighbor
A+A—S+S, cooperative total desorptid€TD), t ! !

(1b Wener = Ses X%
\k

whereA is the reactive specie§ the empty lattice site, and t+At K

kg is the rate of reaction. Notice that stefds) and(1b) are O_O_O_._O_‘
typical parts of realistic, more complex reaction schemes as |

discussed further in the concluding section. Despite their ap- ®

parent simplicity, they display a complex non-MF behavior

characterized by frozen, nonuniversal, initial-condition- FIG. 1. Reaction step for the CPD. If the chosen site and a

dependent steady statgl),13,14. The dependence on the randomly chosen neighbor are filled, the reaction proceeds with rate

initial conditions is the signature of the weak ergodic prop-kg.

erties of the CDs, which is in turn related to the irreversibil-

ity of the reactive schemdda) and(1b). A remarkable fea- II. BOOLEAN DYNAMICS OF THE CPD: MODEL AND

ture of the CDs is the special structure of the underlying EXACT RESULTS

moment equations, which allows one to compute explicitly

the coverage and the fluctuation dynamics and thus test in a

very efficient way the applicability of diverse truncation ap- Consider a 1D lattice witiN sites that may be either

proaches. empty (S or filled with a single particle &). The reaction
The paper is organized as follows. In Sec. I, a compretakes place according to the scheme of Fig. 1. At each time

hensive study of the one-dimensional CPD is presentedstepAt, a lattice site is randomly chosen. If the selected site

First, we introduce a particular biased implementation of thes filled, the particle desorbs with a certain probabiliggual

CPD and characterize its non-MF behavior using an intuitiveto the rate of reactiorkg) provided that its right-neighbor

argument. In Sec. Il B, we introduce a stochastic dynamicasite is also occupied; otherwise, nothing occurs. The classical

rule that mimics the microscopic, time-discrete evolution ofrate equation for this CPD scherfigqg. (18] reads

the system as prescribed by MC simulations and show that

this dynamical rule characterizes properly the steady states of de(t)

the system. In Sec. Il C, we derive evolution equations for dt

the first- and second-order moments of the probability distri-

bution for the microscopic states and use the same formalisigherec(t) is the A-particle concentration, here identified as
to obtain a hierarchy of coupled equations describing thehe mean fraction of occupied sites, also referred to as “cov-
time evolution of a particular subset of moments, namelyerage.” Its solution predicts a decay of the form
those involving contiguous occupation numbers. These mo-

ments can be identified with the probabilities of finding a c(0)

randomly chosen string of contiguous sites simultaneously c(t)= 1T (0Kt

occupied. In Sec. II D, it is found that the solution of the 1+c(O)ket

hierarchy for both microscopic and coarse-grained initial
conditions leads to an explicit expression for the mean covlC & Zero-coverage steady state. However, as we see below,

erage of the lattice. We also derive equations for the coarsdD@ restricted 1D geometry of the lattice allows for non-MF
grained dynamics of vacant sites in terms of generalize&t?ady st{;\tes. It is mdeed easﬂy seen that all Iattlce_conflgu—
probabilities for occupied sites. Next, in Sec. Il E, we presenfations without contiguous particles cannot evolve in time.
a general ME for an array of Boolean variables and show 0 understand this obwo_us MF fqllure in d_etall, we need to
that in the special case of the CPD, the evolution equation§€t UP & model for the microscopic dynamics.

for the mean occupation number and the second-order mo-

ment are similar to those obtained in the CA approach. In B. Boolean modeling and steady states

tsioe;; :::,tk\:\; egggji;gtirflivsagfgf Zi/gmgcr;oggl?:g:ﬁsfgi;ﬁ_ We stipulate that each site in the lattice is characterized
) . . : : by a Boolean occupation number

ing only pair fluctuation correlations fails to reproduce the

correct dynamics, the reason being the non-negligibility of 1 ifsiteiis occupied

higher-order fluctuation correlations. These can be calculated ni(t)=
explicitly from sets of generalized moment equations, which

also allow us to compute the dynamics of the vacant sites for ) ) )
clusters of small size. In Sec. IV, we extend the main result§=1, - - . N. Each site evolves according to the nonlinear
of Secs. Il and Il to the CTD. The conclusions are summadynamical rule

rized in Sec. V, which also outlines a research strategy for

A. Definition of the system and MF rate equation

= —kec(1)?, @

()

(4)

0 ifsiteiis empty,

future work in this area. In the Appendixes, we deal with an;(t+At)=n;(t)— () &r(Ni (N1 (1), i=1,... N,
symmetric version of the CPD and discuss its equivalence (5)
with the biased CPD. We also study the dynamics of particle

islands. where

041102-2



NONLINEAR REACTIVE SYSTEMS ON A LATTICE . .. PHYSICAL REVIEW E 63 041102

Dt This holds for all timest=t. Since £{)(t) is a random
N . i)y variable, it will be nonzero at some tintdor any given site
n(t)= ‘ (=01 ® meaning that the producf'n® ; must vanish for all. This

§&N) (t) expresses the fact that two contiguous sites cannot be simul-

taneously occupied in a steady state. However, not all con-
is a N-dimensional vector of stochastic Boolean decisionfigurations satisfying this condition are attained with equal
variables. If, say, sitéis chosen, théth component will be  probability. For instance, iN is even, we can be certain that
one and all the other components will be zero. Hence, théhe steady-state configuration with alternating occupied and
different componentsﬁ])(t) in a given, single realization are empty sites will never be reached if we start with less than
correlated: half the lattice filled. Therefore, a simple combinatorial
counting of the nonevolving configurations fails to provide
N the correct mean steady-state covergiyg.
2 &0=1, QOLO=8ws. @

C. Moment equations and cluster dynamics

Since at each time stept, one site out olN is randomly . -t US now tumn to the dynamics generated by Eg).

i ble of realiza- First, we fix the initial configuratiogn,(0), ... ,ny(0)) of
chosen, the mean valu (t) over an ensemble the lattice and take the average of E5). over an ensemble
':lokn > vl (;) ° }Nt.hTheladdnllonaclj %tOQ?ﬁSt'vair.'I?‘p@(t)d of different realizations. Using the statistical independence
13_25 rarrészgci/iveﬁlva res = AN T pronenll " of &), &r(t), and the occupation numbers(t), this

R . X
To have a well posed problem, we still have to specify they'e'dS

boundary conditions. We shall take periodic boundary con- Pr
ditions, which amount to settingy. 1(t) =n4(t) in the last ni(t+At)—n;(t)=— Wni(t)niﬂ(t), i=1,...N.
Eq. (5). 9

Implicit in the above scheme is the idea that, at most, one
reaCtiVe event may occur in the Iattice in a giVen t|me inter-The quan“tpr/N can be regarded as the probab"'ty that a
val At, even if there are several priori reactive pairS. The reaction takes p|ace at a given siten the time interval
justification of such a prescription is that, typically, the oc- (¢ t+ At) given that sites andi+1 are occupied. The rate
currence of a reaction requires to overcome an activatiogf reaction is obtained by dividing this probability by the
energy threshold. At ordinary temperatutespposed to pre- tjime stepAt:
vall here, this can be achieved only if a sufficiently strong
fluctuation impinges on the system as a result, say, of the Pr
coupling between the adsorbate and the lattice. Since the kR:W- (10
probability of such an event is small, one may expect that
reactions will occur asynchronously at different lattice sites;To derive the continuous-time limit of Eq9), we divide
which is precisely what is stipulated in our evolution rule. both sides byAt and let this quantity go to zero in such a

Equations(5) will be used in the sequel to describe the way that the reaction rate; remains finite. This can be, e.g.,
dynamics of the CPD at three different levels. accomplished by letting the system sNeimultaneously go

to infinity so thatNAt=C. We shall choose the constant

(1) A “microscopic” level in which the exact micro- equal to unity, implying that, after one time unit, each lattice
scopic dynamics, i.e., the initial conditigm;(0)} and the site has been visited once on average. With this chdige,
decision path represented by the variable set®ecomes numerically equal to the valuepgf. The resulting
{Ex(0), ... .Ey()} and {£R(0), . .. .&r(t)}, is assumed to equation reads
be known in detail. q

(2) An intermediate level in which the system is prepared U= e
in such a way that the initial condition is known in detail and ar iD= ke (N4 (1), (1)
one averages only over the subsequent dynamics, i.e. , over
the different paths or realizations. In a similar way, one can obtain an evolution equation for

(3) A “coarse-grained” description in which one aver- the second-order momenf(t)n;(t). Multiplying Eq. (5) by
ages over a statistical ensemble of realizatiang a non-  nj(t+At) and using Eq(7), one finds
equilibrium ensemble of initial conditions.

n,(t+At)n](t+At)_n,(t)nj(t)

After a timetg, a steady statén’} is attained. The dy- D p

namical rule(5) allows a straightforward characterization of =— —Rni(t)niﬂ(t)nj(t)— —Rni(t)nj(t)njﬂ(t),

these steady states. Since the first term in the right-hand side N N
(rhs) of Eq. (5) cancels with the lhs, one has

i#j, (12
& (nn®t =0. (8 which in the continuous-time limit becomes
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Krni ()N 1 (1) n;(t) —kgni(t)n;(t)n; 4 4 (1).

13

d —
ani(t)nj(t)__

For j=i+1, Eq. (13 together with the Boolean property
n?(t)=n;(t) yields

Ni(ON; 4 1(1) =—Kkeni ()N (1) —kgni ()N (1) N ().

(14

dt

Unless otherwise specified, we shall pgt=1 for simplicity,
implying thatkg is equal to unity. Note, however, that it is
possible to absorb the reaction rteappearing in the time-
continuous equation$ll) and (13) in the time scale by
means of a dimensionless variable kgt [10,14).

An important feature of Eqs11) and (14) is that they
couple in a linear fashion moments involving only contigu-

ous sites. This turns out to be a generic property that als

holds for the dynamics of higher-order moments.

Let us now consider a more general subsek abntigu-
ous lattice sites, . .. ,i+k—1. The probability of finding all
sites occupied at timg i.e., a cluster of sizé, is given by
the quantity

i+k—1

MO =TT n),

i,k=1,...N. (15)

To derive an evolution equation fod{)(t), we must gener-
alize Eqs.(11) and(14). Taking the dynamical rulé€5) as a
starting point, one obtains

i+k—1

[T njt+at-

]=1

i+k—1

II nio

J=l
itk—=2 i+k—1

=— JE D Er(D JH n;(t)
i+k

—sﬂ*k*”mfR(t)jﬂi n;(t), (16)

wherei=1, ...
one gets

N. Taking averages in Eq16) for k<N,

k
%M"’(t)——MEMt)

7

MO (t+AD)-MP (1) =—

We now introduce the global quantity

1 N
PU(D=5 2 ML), (18)

representing the probability of findingfilled adjacent sites
in the N-site lattice. Summing over the site indéxn Eq.
(17), we find

PHYSICAL REVIEW B3 041102

(k—1) 1
PV (t+AL) — P - P,

PVt = -

k<N. (19)

Taking the continuous-time limit of Eq19) for a given
finite vaIu_e of k, a set of evolution equations fde,(t)
=limy_..P{V(t) is obtained:

dP(t)
dt

—(k=1)P(t) =P 4(t), k=1,2,..

. kmaXv
(20

where the integek,, ., is the size of the largest cluster. The
first term on the rhs of Eq20) corresponds to a destruction
of a k-particle cluster by the interaction of two particles in-
side the cluster, while the second term stands for its destruc-
tion by desorption of its rightmost particle, which requires an
8dd|t|onal occupied site, i.e., a clusterlof 1 sites.

If the lattice contains onIy clusters of finite size, then
Kmax<c and the hierarchy of Eq20) is truncated by the

conditionﬁkmaxﬂ(t)zo. The last Eq(20) reads then

dEkmax(t)

—at (21)

=—(Kmax— 1)Ekmax(t) .

D. Solution of hierarchy and mean coverage for microscopic
and for coarse-grained initial conditions

Suppose that we start with a given initial configuration
{n;(0)} characterized by the nonvanishing set of probabili-
ties

{P1(0),P5(0), ... Py

Using the linearity of Eq(20), one can show that the solu-
tion for t>0 is of the form

(0)}.

max

(22

max

—t 1J
P =exp~(k-11} 3, {exp(]—)}

Py+j(0),

k=1,... (23

rkmax-
Note that fort—oc only P, survives, representing the prob-
ability that a randomly chosen site be occupied. Clearly, this
probability is equal to the ratio between the average number
of occupied sites and the total number of sites, i.e., the mean
coverage of the lattice(t). In the long-time limit, one has

N—oo) Kmax—1 _1]_
S (j—!)P,-Hm).

(24)

c(%0)=Py() = lim

N—

j=0

We see that the asymptotic value of the coverage depends on
all details of the initial cluster distribution. The validity of
Eq. (24) is confirmed by MC simulation§Fig. 2(@)]. The
simulations were performed according to the time-discrete
rule (5). The data correspond to a chain ring of 100 particles
and the initial configurations
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C1=11111111111111110111111111111011110111111111111111011111111111111111
11101111111011011111111011111010,

C2=01111001111110010011110111110111011111111110100011111111011011001111
11011101001111101011111111101111,

C3=11010101101001100100101010010010000101001011101001001001011001001111
01100011111001011001101001100111,

C4=10011100111000010011011000001000000000010000100100100100011000101000
01001010010101000011001101100010.

Let us now assume the more realistic situation in whichit is interesting to compare this with the short-time behavior
the initial configuration of the system is not known in detail, of the exact solution of the MF equatiai2). Setting Kg
but is characterized only through the particle coverpgk =1 for simplicity, one has
we consider a uniform ensemble of all random microscopic
configurations with a givermp, the system will initially be

translationally invariant and this property will propagate in Cur(t)= Trpt p—p’t+pt?+o(t3). (30)
time. Thus, the probabilities of findinkg consecutive filled
sitesi, ..., i+k=1 Thus, we see that the first MF deviation appears in the
ket second-order term. For long times, one observes an exponen-
N)/ s - tial decay into an absorbing state characterized by the
P = 11;[. nt), k=1,...N (25 asymptotic coverage
c(®)=pexp—p). (3D

(the angular brackets - -) stand for the averaging over re-
alizationsandinitial state$ will not depend on the evaluation
sitei. After averaging Eq(17) over the initial conditions and

going over to the time continuum, one obtains

Formulas(28) for the transient behavior and formull) for
the asymptotics are confirmed by time-discrete MC simula-
tions [Fig. 2(b)]. As in the previous case, af,(t) with k
dPy(t) =2 vanish fort—«. Note that Eqs(28) are formally ob-
———=—(k—=1)Py(t)— P, ,(t) k=1,2,...,(26) tained from Eqs(23) by averaging over a uniform distribu-
dt tion of microscopic states with global coverage This
_ amounts to allowing for clusters of arbitrarily large size, i.e.,
which is formally identical to Eq(20) for P, with Kpax k.
—o. However, the initial conditions are now simpler. Since  So far, we have only considered the dynamics of particles,
the initial occupancies of each site are statistically indepenbut it is also of interest to ask for the time evolution of empty
dent, one has intervals of a given size inside the lattice. Clearly, the num-
ber of empty intervals must grow as the reactions proceed.
Pu0)=pF k=12,.... (27)  To set up explicit equations for clusters of vacant sites
(*holes”), we consider the time-discrete evolution equation
A solution satisfying the initial condition@7) can be easily for the complementary occupation numkssit) = 1—n;(t),
found by using an ansatz suggestedif]. One obtains
si(t+At) —s;(t)=Pni(H)n;. (1), i=1,...N.
Pl(t)=pexp[p{exq—t)—1}], (28@ |( ) |( ) §N |( ) |+1( ) (32)
P(t)=p< texgd —(k—1)t]Py(1), k=23, .... By averaging this equation over an ensemble of realizations
(28b) and a uniform initial distribution of microscopic states with a
coveragep one gets
Again, the survival expectancy,(t) corresponds to the

mean coarse-grained coveragé) = limy_,.. (Na(t))/N. For ds;(t)
short times, the series expansion of E283 yields . Pab, (339
p*(p+1) where S,(t) = (s;(t)). Equati is i i
_ 2 2 3 1 i . Equation(333 is in agreement with
C(O=PiO=p=pitt 75—+ 0(). 9 " onservation lawd/dt)[ Py (t) + Sy(t)]=0.
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strings of lengtm andm separated by lattice spacings. The
initial conditions for which these equations must be solved
are

S(0)=(1-p)¥, k=1,2,.... (34)

Equations (339 and (33b) can be integrated straightfor-
wardly, since the functions on the rhs are already explicitly
known. In Sec. lll, we show how to obtain explicit expres-
sions for the probabilitieS;(t) and S,(t) by solving a gen-
eralized hierarchy for the joint probabilitie®)(t).

t E. Comparison with the ME approach
1.0 An alternative way of deriving moment equations in the
09 (b) framework of a time-continuous approach is provided by the
' master equatiofME). Let us again consider a setNfBool-
0.8 4 1 ean variablegn}=(n4, ... ,ny) arranged on the sites of a
0.7 ] » 1D lattice with periodic boundariesnf,,=n;). Starting
C o6 from an arbitrary state, the evolution of the probability den-
' sity P({n};t) is governed by a ME of the form
0.5
o \\ aP(in} )5 , |
— =2 wi({n}={n"},)P({n}1t)
0.3 ¥ dt ;i j
02—
0123456780910 +2 wi({n'}={n},uP{n'}), (35
]
FIG. 2. (@) Mean coverage(t)=P,(t) for the four different ~where {n’}=(n,, ... 1- nj,...ny) and w({n}

initial configurationsC1— C4 computed from MC simulations over —{n'},t) is the transition rate from the stafis} to the state
10 realizations. Both the dynamics and the asymptotic value of thqn'} at timet. To obtain an evolution equation for the aver-
coverage are in excellent agreement with formu2® and(24).  age occupation number
The final saturation at different coverage values reflects the depen-
dence on the initial conditions, and hence, the weak ergodic prop-
erties of the systerr(b) Time evolution of the coarse-grained cov- (ni(1)=> ni(HP{n}1), (36)
erage c(t)=P,(t) computed from MC simulations over 40 tn}
realizations for a periodic lattice of i@ites and=0.35,0.5,and 1 we multiply Eq. (35) by n;(t) and sum over all different
(full lattice). As in (a), the final saturation value depends on the configurations{n}. This yiellds
initial coveragep. Note, in addition, the monotonic dependence for
all times ofc(t) as a function of the initial coverage d
_ . . . (M) =(1-2n®Iw{n}—{n'}v). (37

The dynamics of hole multimers can be derived starting
from the evolution equation for the produB,”{ 's(t).  For the time evolution of the second-order moment, one gets
The general form of the evolution equation f@&(t)
=(I1} % 5,(t)) becomes more and more complicated with
increasing cluster size. The next three equations read

d
&mi(t)nj(t)):([nj(t)_2ni(t)nj(t)]Wi({n}_){n'},t»

dsS,(t) +([ni(t) —2n;(t)n;(t) Jw;({n}

—{n'}b)), i#]. (39
dSs(t) @) For the CPD, the transition rate reads
T=P2(t)—P3(t)+P4(t)—P1’2(t), (330 ,

wj({n}—={n"},t) =kgn;(t)n; ;. 1(t). (39

dS,(t) ) Using EQgs.(37) and(38) and the transition probability39)

dt :PZ(I)_PS(t)+P4(t)_P5(t)_P(1,2)(t) with kg=1, one can formally recover Eq$ll) and (13
averaged over an ensemble of random initial conditions. As

+PE1) + PR - PH(v), (33d  expected, this also holds for the higher order momg4s

Note that in the ME approach the double averaging over
where the quantitie®{) (t) on the rhs of Eqs(330 and  realizations and initial conditions is performesimulta-
(33d) are the joint probabilities of finding two fully occupied neouslyvia the probability distributiorP({n},t). In the CA
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model, this has been done in two separate steps. One firsequences of correlated reactions between the particles.

chooses randomly an initial condition with a givgnand  These correlations are calculated from the second hierarchy

thereafter performs a series of different realizations. Nextequation(12) with j=i+1. Neglecting terms irO(1/N?)

one again selects a new random initial condition and a nevand higher in the rhs, we have

set of realizations is carried out, and so on. L
Ill. TRUNCATION SCHEMES AND THE ROLE OF fiisa(HAD == 502D 2D+ Tiira(t)

FLUCTUATIONS IN THE CPD

1
The statistical properties of thi-site CPD system are - N{Ci(t)CHl(t)_Ci(t)[ci+1(t)]2
described by the “Boltzmann-like” distribution functions
Ci(:‘,)iz...,in(t):<nil(t)ni2(t)’ ... (1)), which can be ex- +Cio(DF i 2()—Cipa(DF 4 2(1)
pressed in terms of the mean occupatiaf¥(t)=(n;(t)) (D) (45)

and a set of correlation functions
N) Here the first term in curly brackets represents the propaga-
i it ot = (8N (t) o (to) - - - o (tn)), tion to neighboring sites of fluctuations correlated over a
(40 distance of two lattice spacings. The other terms essentially
) ) contain the correlations created or destroyed by the reaction
where &n;(t)=n;(t)—c;”(t). In the following, we shall hrocess: the terms linear i, ; represent the effect of ex-
notational simplicity. Fom=2 andt,=t,=t, Eq. (40) de-
fines the equal-time pair correlation functiof; ;(t) 1 1 )
=f;;(t;1). ~ NGOG+ Gei(DICia(D)] (46)
An approximate closure to the hierarchy equations can be
obtained by performing an expansion in terms of correlatioraccounts for the correlations created by the reaction from a
functions and keeping them up to a certain order, neglectingompletely factorized state. The other pair correlations are
the higher-order ones. In this so-called Ursell expansion onealculated in a similar way from Eq12) with j=i+I
defines the correlation functiorighrough the relations

cij(=ci(t)c;(t)+f; (1), (419 fi,i+|(t+At):fl(t)_%ci(t)fwl,iﬂ(t)
Ci j k() =ci(t)c;(t)c(t) +c()f; j(t) +ci (D) F; k(1) 1
6O D+ 1 (D), (a1b _N(CiJrl(t)+Ci+|+1(t))fi,i+l(t)
teJ;.t}Ov;]/Zere the quantitiels ; andf; ;  account for the fluc- _ %cm(t)fi,mﬂ(tHO(1/N2)
f,(H)=(n,(t)n;(1)) (429 + higher-order terms, 1=2, ... [N]/2.
£, (D) =(8n, (1) dny (1) (1)), (42b) @7

. L In the spatially homogeneous case, the system is translation-
etc. Different approximations emerge from E@41) when 5y jnyariant; the solution obeys the relatior(t) = c(t) and

tem;s cogntaining correlation functions of higher orders areg,q correlationd; ;(t)=1,;_;(t) depend only on the relative
neglected. ’

distance between the evaluation sites. In the liMit o,

In the zeroth approximation all correlations between oc—Eqs (44), (45) and (47) yield the following set of time-
cupation numbers are neglected and the state of the SyStemdaninuoﬁs equations:

completely specified by the mean occupation numbgty.

From Eq.(9) we have the MF equation de(t)
TR —c(t)2=fy(1), (4839
1
Ci(t+At)=c;i(t) — S Ci(1)Cia(t). (43
) Y 2ot -1~ f—c 0, (@8
=c c(t)—1}— -C ,
In the first approximation the rate equatiof) is extended dt ! 2
with a term linear in the NN pair correlatiof ; , 1(t),
dfi(t)
g0 = SO+ 200+ ], 1223,

1 1
Ci(t+At):Ci(t)_Nci(t)CHl(t)+Nfi,i+1(t)- (44) (489

Equation(44) describes the corrections to the MF equationEquationg48) can be used as a starting point for a truncation
(43) caused by the fluctuatiorfs ;. 1(t) that are built up by based on the neglect of pair correlatidng) for all | equal
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FIG. 3. Time evolution of the mean concentratioft) accord-
ing to the rate equatio(®) with kg=1 (curve MB, the exact solu-
tion (2839 (curve ES, and the numerical solution for the pair ap-
proximation of the truncation hierarchyt8) (curve PA. Initially,
the lattice is assumed to be fully occupigo=1). In contrast to the
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The first(second term on the rhs of Eq50) corresponds to
an event in which a particle inside the cluster of
(k)-occupied sites desorbs by interaction with a neighbor
inside the cluster, while the thirdourth) term stands for the
desorption of the rightmost particle inside the cluster by re-
action with an occupied neighbor site at its right. Equation
(50) is solved using the ansatz

PMD=p " 2exi] - (j+k—2)tIP{ 1),

j,k=1,2,.... (57
This leads to theinfinite) coupled set of equations
dPY(t)
—=—pexp—[PYH+P{ VD], 1=23,...,
(52)

exact solution, the truncated one decays slowly to the MF steadyVith the boun((lj)ary Cond't'o'ﬁ)l,ll(t) =P5(t). An explicit ex-
state. The inset shows a log-log plot of the concentration for long?ression forP}’(t) can be obtained from E¢52) by means

times for the MF and the truncated solution.

to or larger than a certain cutoff integer. Forl,=2, i.e., in

the pair approximation, the system of two equations ap-

of a generating functiohl5]. The final result reads

"

-1
P&',ﬁ(t>=Pl<t>f p>, [In(w)
k=0 p

proaches the steady state (0,0), although the asymptotic de-

cay ofc(t) is much slower than the ! decay prescribed by
the MF approach due to large transient effect$.ift) (Fig.

3). A log-log plot of the numerical solution suggests an in-

verse power law behavior af(t) for long times with an
exponent less than or(see inset in Fig. B In the pair ap-
proximation, the stability of the MF fixed point can be
proven by geometric argumeritlumerical results suggest
that this property holds for any arbitraky, meaning that the

P(t)

+|In

(53

ot

This allows to compute the fluctuation correlatidi(t),
which is given by
fi() =P —[P1(D]%,

1=1,2,.... (54

system truncated to any order will always attain the MFThijs function decreases superexponentially with increasing
steady state of zero concentration, in contradiction with thejistance, approaching zero fdr—ce. The three-point near-

non-MF results reported above. This reflects the nonggt

negligibility of the three-point fluctuation correlations

neighbor (NN) fluctuation correlation h(t)
=(én;én;,,15n;,,) can be expressed as

fi ; k() which, as we shall see presently, indeed become of

the same order of magnitude as the pair correlatigfig
already for small.

h(t)=P3(t) —[P1(t) I3 —{2f1(t) = f2(1)}P1(t). (55

One can compute exactly these correlation fluctuations byformulas(54) and (55) are confirmed by numerical simula-
considering the evolution equation for the joint probabilitiestions (Fig. 4). These also show thdt(t) may already get

P{(t), which in our model correspond to the distribution

functions
o)

Taking Eq.(16) as a starting point, a tedious but straightfor-
ward calculation shows th&{')(t) evolves according to

i+j-1

IT nv

r=i

i+j+l+k=2

Il

s=i+j+l-1

(49

dPk(D) _
dt

~ (1= )Pk~ (k=DPt) =PI

—Pla(0, GkiI=12, 0

This is illustrated by an analysis of the 2D velocity field.

larger thanf|(t) for I=2. In fact, the asymptotic values
h(e) andf,(e) are of the same order of magnitude in the
whole range of the initial coverage (Fig. 5. Higher-order
fluctuations become comparatively large in the dilute limit
p<l.

In the light of the above, the failure of the truncation
scheme seems thus to be due to the fact that it includes pair
correlations of arbitrary long range without taking relevant
higher-order fluctuations into account from the very begin-
ning. Although we have only shown the non-negligibility of
correlations up to the third order, some numerical computa-
tions suggest that, regardless of the initial conditions chosen,
it is necessary to take into account the whole set of fluctua-
tion correlations to obtain a deviation from the MF steady
state.

A more restrictive truncation scheme consists in neglect-
ing the effect of large clusters in Eq$26) by setting

041102-8
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FIG. 4. Time evolution of 1(t),f,(t), andh(t) computed from

012345678910

MC-simulations over 1®realizations for a periodic lattice witN

=10* and p=0.35. Asymptotically,f,(t) is nearly an order of
magnitude smaller thafy(t), in accordance with the strong spatial
decay predicted by formulg4). In contrast, the three-point corre-
lation h(t) is of the same order of magnitude &gt).

P(t)=0 beyond a given sizg14]. This truncation proce-
dure yields a smooth expansion of the exact reg@Bs and

(32) in powers ofp.

To conclude this section, let us note that the explicit
knowledge of the joint probabilitie®)(t) can be used to

integrate Eqs(33¢ and (33d). The solutions of Eqs(33)

read

Si()=1—=Py(1),

Sy(1)=1—2P4(1)+ Py(1),

(56a

(56b)

Sy(t)=1+(—3+p—3p?)P(t)+2P,(t)— 3 P3(t),

(560

Sy(t)=1+(—4+3p—2p*+3p®)Py(t) +(3—p+3p?)

X P,(t) = P3(t) +5P4(t).

They are shown in Fig. 6 for the case of an initially full

lattice.

2.0
18 |
16 |
14 |
1.2 |
10 |
0.8
0.6 |

h{eo)ty(e)

0.00.102030405060.708091.0
p

FIG. 5. p dependence of the asymptotic rakife)/f,() com-
puted from the formula&4) and(55). For decreasing, three-point

fluctuations become increasingly important.

(560
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FIG. 6. Analytical solution of the first four evolution equations
for intervals of vacant sitesp&1). The quantitiesS;—S, grow
monotonically due to the empty segments created by the reaction.

IV. DYNAMICS OF THE CTD

The starting point is again a 1D lattice with em[§§ and
occupied sitesA). The reaction now proceeds according to
the scheme depicted in Fig. 7. At each time step, one site is
randomly chosen. If the chosen site and its neighbor are oc-
cupied, both particles will desorb with probabilitkg. The
classical rate equation reads

dc(t)

dt :_ZkRC(t)Z! (57)

which vyields a faster decay than E@2) to a zero-
concentration steady state, but again proportional fofor

long times. It is easily seen that the actual 1D system has the
same steady states as the CPD system, i.e. all configurations
with isolated particles. Once more, a deviation from the MF
behavior is found.

To set up the corresponding microscopic evolution law,
we must take into account that this time a particle at a given
sitei will also desorb if its left-neighbor site—1 is chosen
and it is occupied. One has, therefore, an additional contri-
bution in the rhs of the dynamical rule

n(t+ At =ni(t) — £Q(0) (DN (DN 4 1(1)

=& TP E&RMON (D), =1, N,

(58)

As in the CPD case, we can take Ef8) as a starting point
to derive evolution equations for the first- and the second-
order moments

selected sitle ﬁllled neighbor
t

i

R
t+At

b
o O

FIG. 7. Reaction step for the CTD. In contrast to the CPD case,
both interacting particles desorb when the event takes place.
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d
&ni(t):_nifl(t)ni(t)_ni(t)niJrl(t)v (599

d
ani(t)ni +1(D==ni ()N L1 () =M1 (DN N; 1 (1)

— NN (N o(1), (59b)
d
ani(t)nm(t): —Ni(H)N; L1 ()Nnj (1)
—Ni()N; 4 - 1(ON; (1)
=N ()N (DN 4 14(1)
—ni_l(t)ni(t)ni+|(t), 1=23,....
(599

A generalization of Eqs(599 and (59b) for strings of k

consecutive sites leads again to a hierarchy for the global

probabilitiesP,(t):

dPy(t)

g =~ (kT DP() = 2Py (1),

k=12, ... Kmax.
(60)

PHYSICAL REVIEW B3 041102
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Note that the prefactor of the second term is now 2 due to the -

additional reactive event between the leftmost particle inside FIG. 8. (a) Mean coverage(t)=P,(t) for a chain ring of 16

the cluster and a particle at its left-neighbor site. An equatiorsites for the four different initial configuratior®1—C4 computed

of the form(60) has been obtained in the context of reactanfrom MC simulations over 10realizations[cf. Fig. 2a)]. Notice,
isolation [7] and random sequential adsorption modelsagain, the dependence of the asymptotic coverage on the initial
[16,17). In these models, the deposition of a dimer on theconditions. (b) Time evolution of the .coarse-grained. coyerage
lattice is equivalent to the desorption of a pair of reactant&(t)=Pu(t) computed from MC simulations over 36ealizations

and empty pairs of sites available for deposition correspon

to unreacted pairs of reactar(see Ref[10]).

The solutions of the hierarch0) for a given initial con-

figuration read

_ kma K (2 exp —t)— 2}
P =exp—(k-1)t} 2 { ex“j!) D60,

k=1, ... Kmax- (61)

{pr a periodic lattice of 10 sites withp=0.35,0.5, and 1full lat-

tice). In contrast to the CPD case, the behavioc) is no longer
monotonic inp for sufficiently large times.

Thus, the corresponding stationary mean coverage takes the
form

c(%)=Py(*)=pexp—2p) (64)

(cf. Ref. [18]) from which the mean asymptotic coverage Note that, contrary to the CPD case, fhhdependence of the

follows straightforwardly
Kmax—1 i
Na(®) & 7 (=2))—
= P;+1(0).

N = ]!
(62

c() =Py() = lim

N— oo

asymptotic coverage is no longer monotonic. Thus, as long
asp>0.5, c(«) increases whep is decreasedlFig. 8b)].

The initial situation of a fully occupied latticep& 1) corre-
sponds in random dimer deposition to an initially empty lat-
tice. In this particular case, a famous combinatorial argument
by Flory[19] predicts the value™? for the asymptotic mean

This result is again in excellent agreement with MC simula-fraction of empty sitegin our picture, occupied sitgsat

tions[Fig. 8a)]. The coarse-grained solulion of E@O) is
formally obtained by settind,,,,=> and Pj(0)=pj. This
yields

Pi(t)=pexd 2p{exp(—t)—1}], (63a

P (t)=p<texd —(k—1)t]Py(t), k=273, ...

(63b)

jamming, in accordance with the formu(@4).

For the CTD system, it is also possible to derive a trun-
cation hierarchy by introducing fluctuation correlations in
Egs. (59). As in the CPD case, the second-order hierarchy
yields a MF steady state, in contradiction with the exact so-
lution of Eq.(60). Once more, the reason for the failure is the
non-negligibility of the three-point correlations, some of
which can be computed by solving the equation

041102-10
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dpj('?((t) Another possible extension of our work consists of in-
g = - 1PN — (k=1 Pt - PLR(D) creasing the range of the local interactions by allowing, for
instance, interactions with next to nearest neighbors. One
— p(Qlk(t)_ P(')k+l(t)_ P(IEH(U, expects that the system approaches the MF dynamics as the
T b b number of interacting neighbors increases. It is certainly
ikl=12,... (65) worth to characterize this approach in a more quantitative
way.
which is also found in models for random dimer deposition 'f'Thetldynamlcsd'?; the olneiéjltrjnensmngI?C:;Ds cohanges SIg-
: ; il - -3Q.
[20]. As shown in Sec. II D, the correlation functioi§!) ~ Nificantly in the dittusion-limite case4, Q. One can

can be used to set up explicit equations for the dynamics qiccount for the mobility of the particles by introducing ad-
vacant sites. ditional diffusion terms in the dynamical rule. For the CPD,

Finally, let us mention that it is possible to rederive thethis has been done in Ref31] for initial conditions of the

moment equationg59) and the hierarchy60) from a ME form (27). As expected, diffusion yields anomalousde-
analogous to Eq(35). cay into a zero-concentration steady state. The results in Ref.

[31] have been compared to an off-lattice solution by ben-
Avrahamet al.[32]. Interestingly, the on-lattice solution dis-
V. SUMMARY AND OUTLOOK plays a slower decay of the coverage for early times due to

We have developed a one-dimensional CA model thathe finite propagation velocity of a local concentration per-
mimics the mesoscopic dynamics of two cooperative desorgroation on the lattice. A CA approach for the diffusion-
tion reactions. An important advantage of this approach idimited CDs has been developed by Privmgg8]. In the
that one directly sees the effect of a small modification of the>ivman model, all lattice sites are synchronously updated at
MC algorithm on the underlying moment equations. The€ach time step. An extension of this model for the diffusion-
modeled allows us to derive a hierarchy of linear equationdeSS CDs studied above is also worth carrying out.
from which the mean particle coverage could be computed A hatural generalization of our calculations is to study the
for both microscopic and coarse-grained initial conditions dynamics of the CDs on Bethe lattices of arbitrary dimension
We have seen that a truncation scheme retaining only paiﬂ(Dr which results for the cluster dynamics derived heuristi-
fluctuation correlations fails to provide the correct behaviorc@lly by Majumdar and Privmafsee[10]) are available. For
of these systems, due to the importance of higher-order fludhe CPD, we expect to obtain results valid for physical lat-
tuations. However, an alternative truncation based on néices as well by extending some expansion methods devel-
glecting the effect of large clusters in the dilute limit yields aOpe‘.j in the framework Qf dimer depositipd4].
smooth expansion of the cluster dynamics in powers of the Finally, one would like to extend the boolean CA ap-
initial coverage. In the case of the CTD, we have pointed ouProach to three-state models accounting for the presence of
some analogies with models for dimer deposition. more than one species and, more generally, to models dis-

The CDs studied here are relevant both from a theoretica?l@ying complex MF behavior like oscillatior85-37 and
and from an experimental point of view. Despite their sim-Phase transitiong38,39.
plicity, they exhibit a complex non-MF behavior character-
ized by nontrivial memory effects and spontaneous ordering. ACKNOWLEDGMENTS
On the other hand, a large number of physical processes on We are indebted to F. Baras, J.P. Boon. H.L. Frisch, A.

surfaces involve cooperative desorption of the prOdUCt%rova\ta and F. Vikas for helpful discussions. This work was

E:?t%)nzﬂ Lna%?égﬁﬁlﬁ'ofsgﬁg (E,)rrosttjla(EQSSZIZ] t?scg%‘é?;(;t?;nex'supported, in part, by the Training and Mobility of Research-
y y o ers program of the European Commission and by the Inter-

of condensed-gas radicd85], and bond formation in poly- L , )
mers[7] can be mapped into the CDs. A classical exampleumversny Attraction Poles program of the Belgian Federal

consists of a long polymer chaitmethyl vinyl ketone Government,

formed by immobile radical groups that react with nearest

neighbors so as to form rings when the chain is hegiéd APPENDIX A: - THE SYMMETRIC CPD

Clearly, some groups will be isolated by the reaction dynam- | the symmetric version of the CPD model, a particle at
ics and will remain unreacted. In the CTD model, the unreyne chosen sitdooks either at the left- or at the right-
acted groups can be identified with theparticles and the nejghbor site with equal probability and desorbs if the cho-

rings correspond to pairs of vacancies left upon reaction. Thgen neighbor is occupied. In this case, the dynamical rule
quantity of interest, i.e., the fraction of unreacted groupsyeads

plays then the role of the lattice coverage.

The effect of incorporating the backward reaction s&ep Mi(t+ A1) =ni(1) = £Q (D) &N (D{EL (DN _1(1)
+A— A+ A to the CPD has been studied in R¢f6,11,13. ]
In this case, the mixing properties of the system are restored H1-& OO}, i=1,... N,
and one attains a MF steady state. It would be desirable to (A1)

extend the present study to the reversible CTD and also
study the influence of an additional random particle infut The additional decision variablg (t) is equal to one if the
— A on the CDs. left neighbor is chosen and zero otherwise. Clearly, the ad-
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ditional choice between left and right may change the global N,(c) =N, ()
coverage in a realization characterized by a given path )

{£4(0), ... .&(D)}. In contrast, one easily checks that aver-
aging Eq.(Al) leads to the balance equatiof®0) and (26) N

valid for the asymmetric system. Clearly, the contributions to 2 (') (GADN, _1(JADN (AN, 1(jAL).

the destruction of a cluster by reactive events between two =

particles inside the cluster are the same in both models. In (B4)

the asymmetric model, a cluster may be destroyed by the

choice of its rightmost particle, which will react with its The validity of this formula for the asymptotic coverage in-
right-occupied neighbor with probability one. In contrast, duced by a single realization can be easily checked numeri-
this event will only take place with probability in the sym-  cally.

metric model, but there is an additional such contribution Following Sec. Il D, we now consider an ensemble of
due to the reaction of the leftmost particle in the cluster withrealizations starting from the same initial condition. The
its left-occupied neighbor. Therefore, both models will leadprobability of finding an island ok consecutive sites can be
to the same balance equations for the cluster probabilitiegefined in a similar way t(ﬁk(t):

Ek(t) and P(t). This conclusion is supported by compari-

Z
HMS =)

N
son of MC simulations performed according to the ru@s —(N) _i E (,) i k=1 N—1
and(Al). A similar argument can be applied to the symmet- (t)= = (1), k=1,..., :
ric CTD. (B5)
with

APPENDIX B: DYNAMICS OF PARTICLE ISLANDS

itk—1
The definition of a particle cluster introduced in Sec. II C _

was nonexclusive, meaning that a cluster of a given size ®={1-ni 40} JH, (O =ni (D} (BO)

could contain smaller clusters. In the following, we will con-

sider a more restrictive definition in which only isolated After some algebra, one obtains

strings of particles are regarded as distinct clusters. These . o o o

“particle islands” are characterized by the nonvanishing [ (D) =Py(t) = 2Py 1(t) + Py yo(t). (B7)

product

Thus, once the solution for the set Bf(t) is known, it is

i+k-1 easy to determine the time evolution for the islands. A simi-
{1-n;_4(t)} 1T ) HL=ni (D, (B1) lar relation is found for coarse-grained initial conditions. In
=i the continuous-time limit, one has
. . . . . . . I+k71
wherek is the size of the island. In B-site periodic lattice, L(={{1=n,_4()} H N (71— i (D}

the total number of islands of siZeis given by
=Py(t) = 2Py 1 (1) + Py o(1)

{1-ni (D)}, =[1-2pexp —t)+pZexp —2t)]Py(t). (B8)

(B2)

i+k—1

N k(t)= 2{1 n; 1(t)}{ H. n;(t)

Note thatl,(t) increases monotonically in time since the
number of isolated particles always increases. The situation
and the total number of islands M (t)=}" 11NI (t) (the is less obvious for multiparticle islandBig. 9). If the initial
largest island can at most haie- 1 sites in the ring With ~ coverage is high enough, their number will first be increased
this definition, islands can only be created, never destroyediue to the breaking of larger islands, however, they will
even though their size may decrease in time. In order tsooner or later be themselves reduced to single-particle is-
create a new island at tinfiean existing one must be split up lands by the ongoing reactions.

by removal of an internal particlénot at the edge of an The situation is slightly different in the CTD, since two-
island. Therefore, the time evolution &, (t) will be given  particle islands can indeed be destroyed. The evolution of
by N,(t) in a single realization is given by

N

= (i) : : : )
|(t+At I(t)+2 §(')(t)n, l(t)n (t)n|+l(t) Nl(t+At) Nl(t)+21 gN (t)nl71(t)n|(t)n|+l(t)n|+2(t)

(B3) N

=2, O (OO (0

In the limitt— oo, the iteration of this formula yields the total

number of particleN,() in the steady state X{1—=n;, (1)} (B9)
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FIG. 9. Time dependence bf(t), 1,(t), andl;(t) according to
formula (B8) for an infinite, initially full chain p=1).
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for the destruction of a two-particle island. The total number
of particles in the steady state can be written as

o N
NA<oc>=N.<0>+j§0 21 EQGADNGADN L 1(jAY)

*{n_1(jAD+no(JAD - 1. (810

The dynamics of the islands can be easily determined by
using the relationgB7) and (B8), which also hold in this
case.

The first term describes the creation of a new island by re-
action of two internal particles, while the second term stands
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