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Nonlinear reactive systems on a lattice viewed as Boolean dynamical systems

E. Abad,* P. Grosfils, and G. Nicolis
Centre for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, Campus Plaine, Code Postal 231,

B-1050 Bruxelles, Belgium
~Received 22 August 2000; published 19 March 2001!

We present a stochastic, time-discrete Boolean model that mimics the mesoscopic dynamics of the desorp-
tion reactionsA1A→A1S andA1A→S1S in a one-dimensional lattice. In the continuous-time limit, we
derive a hierarchy of dynamical equations for the subset of moments involving contiguous lattice sites. The
solution of the hierarchy allows to compute the exact dynamics of the mean coverage for both microscopic and
coarse-grained initial conditions, which turn out to be different from the mean field predictions. The evolution
equations for the mean coverage and the second-order moments are shown to be equivalent to those provided
by a time-continuous master equation. The important role of higher-order fluctuations is brought out by the
failure of a truncation scheme retaining only two-particle fluctuation correlations.
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I. INTRODUCTION

When reactive processes take place in low-dimensio
spaces, the mean-field~MF! laws of classical kinetics, in
which each particle is assumed to interact with the system
a whole, become questionable. In this simple one-part
picture, information about special geometric constraints
many-particle correlation effects is absent. However, th
features become increasingly important as the dimension
of the space decreases and may eventually give rise
crossover between universal macroscopic MF behavior
specific, strongly lattice-dependent behavior below a criti
dimensiondc . The critical dimensiondc is found to depend
on the characteristics of the support~such as average coo
dination number! and the stoichiometry of the reactive d
namics, i.e., its degree of nonlinearity.

The crossover phenomenon mentioned above is not
cific to reactive systems, but is common to many other s
tistical systems~interacting spins, random walks, etc.!. To
understand its real nature, it is necessary to resort to a m
refined description in which relevant fluctuation effects
concentration and occupation number space can be
counted for. In view of the difficulties encountered by a fu
scale microscopic analysis, one typically tries to dev
‘‘minimal’’ models that contain the necessary ingredients
observe a significant departure of MF behavior at sufficien
low dimensions. A probabilistic, time-continuous approa
of this kind for a detailed study of fluctuations is provided
master equation~ME! techniques in which the local dynam
ics is specified by transition rates between different mic
scopic states. In the ME approach, one is typically led t
set of evolution equations for the moments of the probabi
density, which can be taken as a starting point to comp
the most characteristic macroscopic observables, gene
associated with the first low-order moments. However, if
transition rates are nonlinear, the low-order moments will
obey closed equations but will rather be linked to the high
order ones by an infinite hierarchy of coupled equations

*Email address: eabad@ulb.ac.be
1063-651X/2001/63~4!/041102~13!/$20.00 63 0411
al

as
le
r
e

ity
a
d
l

e-
-

re

c-

e

y

-
a
y
te
lly
e
t

r-
n

the general case, these hierarchies cannot be solved
closed form. Suitable truncation techniques may then hel
overcome this difficulty.

A more recent, very successful method of studying
evolution of low-dimensional reactive systems is based
Monte Carlo~MC! simulations@1#, in which the microscopic
state of the system is updated at discrete time steps acco
to a given dynamical rule. One of our goals in this paper is
establish a link between the physics underlying this simu
tional approach and the ME formalism. To this end, we sh
formulate mathematically the evolution law prescribed
the MC algorithm as a stochastic dynamical system wh
state variables are Boolean occupation numbers for the s
of each lattice site@2,3#. As we shall see, this cellular au
tomaton~CA! model yields a set of moment equations sim
lar to that obtained from a time-continuous ME.

So far, most of the literature devoted to the effects
dimensionality on reactive dynamics has focused
diffusion-controlled reactions@4–6#. In these systems, devia
tions of MF behavior at low dimensions may be expec
due to the reduced effective mobility of the reactants. Th
are, however, situations in which diffusion can be neglec
within the time scale of interest, like, e.g., chemical reactio
in solid materials and certain radical isolation problems@7#.
Such systems of immobile reactants constitute the objec
our study in this paper. Clearly, the absence of diffus
reduces the ability of each particle to interact with all t
others, thus driving the system further away from the ap
cability conditions of MF theory. This effect is enhanced
the presence of short-range interactions restricted to,
nearest neighbors and hard core exclusion not allowing m
than one particle per lattice site@8–12#.

More specifically, we will study the one-dimensional~1D!
lattice dynamics in two particular examples of nonlinear
reversible reactions associated with the cooperative des
tion systems~CDs!

A1A→
kR

A1S, cooperative partial desorption~CPD!
~1a!
©2001 The American Physical Society02-1



a
a
io
n
e
p
il

in
itl
in
p-

re
te
th
iv
ic
o
th
s
fo
tr
lis
th
ly

m
a
s
e

tia
ov
rs
ze
en
o
on
m
. I
ua
in

he
o
t

ic
f

ul
a
fo
a

nc
ic

r

ime
ite

r
ical

s
ov-

low,
F
gu-
e.
to

zed

ar

d a
rate

E. ABAD. P. GROSFILS, AND G. NICOLIS PHYSICAL REVIEW E63 041102
A1A→
kR

S1S, cooperative total desorption~CTD!,
~1b!

whereA is the reactive species,S the empty lattice site, and
kR is the rate of reaction. Notice that steps~1a! and~1b! are
typical parts of realistic, more complex reaction schemes
discussed further in the concluding section. Despite their
parent simplicity, they display a complex non-MF behav
characterized by frozen, nonuniversal, initial-conditio
dependent steady states@10,13,14#. The dependence on th
initial conditions is the signature of the weak ergodic pro
erties of the CDs, which is in turn related to the irreversib
ity of the reactive schemes~1a! and~1b!. A remarkable fea-
ture of the CDs is the special structure of the underly
moment equations, which allows one to compute explic
the coverage and the fluctuation dynamics and thus test
very efficient way the applicability of diverse truncation a
proaches.

The paper is organized as follows. In Sec. II, a comp
hensive study of the one-dimensional CPD is presen
First, we introduce a particular biased implementation of
CPD and characterize its non-MF behavior using an intuit
argument. In Sec. II B, we introduce a stochastic dynam
rule that mimics the microscopic, time-discrete evolution
the system as prescribed by MC simulations and show
this dynamical rule characterizes properly the steady state
the system. In Sec. II C, we derive evolution equations
the first- and second-order moments of the probability dis
bution for the microscopic states and use the same forma
to obtain a hierarchy of coupled equations describing
time evolution of a particular subset of moments, name
those involving contiguous occupation numbers. These
ments can be identified with the probabilities of finding
randomly chosen string of contiguous sites simultaneou
occupied. In Sec. II D, it is found that the solution of th
hierarchy for both microscopic and coarse-grained ini
conditions leads to an explicit expression for the mean c
erage of the lattice. We also derive equations for the coa
grained dynamics of vacant sites in terms of generali
probabilities for occupied sites. Next, in Sec. II E, we pres
a general ME for an array of Boolean variables and sh
that in the special case of the CPD, the evolution equati
for the mean occupation number and the second-order
ment are similar to those obtained in the CA approach
Sec. III, we study the relevance of inhomogeneous fluct
tions in the CPD system. A set of evolution equations reta
ing only pair fluctuation correlations fails to reproduce t
correct dynamics, the reason being the non-negligibility
higher-order fluctuation correlations. These can be calcula
explicitly from sets of generalized moment equations, wh
also allow us to compute the dynamics of the vacant sites
clusters of small size. In Sec. IV, we extend the main res
of Secs. II and III to the CTD. The conclusions are summ
rized in Sec. V, which also outlines a research strategy
future work in this area. In the Appendixes, we deal with
symmetric version of the CPD and discuss its equivale
with the biased CPD. We also study the dynamics of part
islands.
04110
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II. BOOLEAN DYNAMICS OF THE CPD: MODEL AND
EXACT RESULTS

A. Definition of the system and MF rate equation

Consider a 1D lattice withN sites that may be eithe
empty ~S! or filled with a single particle (A). The reaction
takes place according to the scheme of Fig. 1. At each t
stepDt, a lattice site is randomly chosen. If the selected s
is filled, the particle desorbs with a certain probability~equal
to the rate of reactionkR) provided that its right-neighbo
site is also occupied; otherwise, nothing occurs. The class
rate equation for this CPD scheme@Eq. ~1a!# reads

dc~ t !

dt
52kRc~ t !2, ~2!

wherec(t) is theA-particle concentration, here identified a
the mean fraction of occupied sites, also referred to as ‘‘c
erage.’’ Its solution predicts a decay of the form

c~ t !5
c~0!

11c~0!kRt
~3!

to a zero-coverage steady state. However, as we see be
the restricted 1D geometry of the lattice allows for non-M
steady states. It is indeed easily seen that all lattice confi
rations without contiguous particles cannot evolve in tim
To understand this obvious MF failure in detail, we need
set up a model for the microscopic dynamics.

B. Boolean modeling and steady states

We stipulate that each site in the lattice is characteri
by a Boolean occupation number

ni~ t !5H 1 if site i is occupied

0 if site i is empty,
~4!

i 51, . . . ,N. Each site evolves according to the nonline
dynamical rule

ni~ t1Dt !5ni~ t !2jN
( i )~ t !jR~ t !ni~ t !ni 11~ t !, i 51, . . . ,N,

~5!

where

FIG. 1. Reaction step for the CPD. If the chosen site an
randomly chosen neighbor are filled, the reaction proceeds with
kR .
2-2
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NONLINEAR REACTIVE SYSTEMS ON A LATTICE . . . PHYSICAL REVIEW E 63 041102
jWN~ t !5S jN
(1)~ t !

A

jN
(N)~ t !

D , jN
( i )~ t !50,1 ~6!

is a N-dimensional vector of stochastic Boolean decis
variables. If, say, sitei is chosen, thei th component will be
one and all the other components will be zero. Hence,
different componentsjN

( i )(t) in a given, single realization ar
correlated:

(
i 51

N

jN
( i )~ t !51, jN

( i )~ t !jN
( j )~ t !5jN

( i )~ t !d i j . ~7!

Since at each time stepDt, one site out ofN is randomly
chosen, the mean valuejN

( i )(t) over an ensemble of realiza
tions will be 1/N. The additional stochastic variablejR(t)
takes randomly the values 1 and 0 with probabilitiespR and
12pR , respectively.

To have a well posed problem, we still have to specify
boundary conditions. We shall take periodic boundary c
ditions, which amount to settingnN11(t)5n1(t) in the last
Eq. ~5!.

Implicit in the above scheme is the idea that, at most,
reactive event may occur in the lattice in a given time int
val Dt, even if there are severala priori reactive pairs. The
justification of such a prescription is that, typically, the o
currence of a reaction requires to overcome an activa
energy threshold. At ordinary temperatures~supposed to pre
vail here!, this can be achieved only if a sufficiently stron
fluctuation impinges on the system as a result, say, of
coupling between the adsorbate and the lattice. Since
probability of such an event is small, one may expect t
reactions will occur asynchronously at different lattice sit
which is precisely what is stipulated in our evolution rule

Equations~5! will be used in the sequel to describe th
dynamics of the CPD at three different levels.

~1! A ‘‘microscopic’’ level in which the exact micro-
scopic dynamics, i.e., the initial condition$ni(0)% and the
decision path represented by the variable s

$jWN(0), . . . ,jWN(t)% and $jR(0), . . . ,jR(t)%, is assumed to
be known in detail.

~2! An intermediate level in which the system is prepar
in such a way that the initial condition is known in detail a
one averages only over the subsequent dynamics, i.e. ,
the different paths or realizations.

~3! A ‘‘coarse-grained’’ description in which one ave
ages over a statistical ensemble of realizationsand a non-
equilibrium ensemble of initial conditions.

After a time tst a steady state$ni
st% is attained. The dy-

namical rule~5! allows a straightforward characterization
these steady states. Since the first term in the right-hand
~rhs! of Eq. ~5! cancels with the lhs, one has

jN
( i )~ t !ni

stni 11
st 50. ~8!
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This holds for all timest>tst . Since jN
( i )(t) is a random

variable, it will be nonzero at some timet for any given site
i meaning that the productni

stni 11
st must vanish for alli. This

expresses the fact that two contiguous sites cannot be si
taneously occupied in a steady state. However, not all c
figurations satisfying this condition are attained with equ
probability. For instance, ifN is even, we can be certain tha
the steady-state configuration with alternating occupied
empty sites will never be reached if we start with less th
half the lattice filled. Therefore, a simple combinator
counting of the nonevolving configurations fails to provid
the correct mean steady-state coverage@14#.

C. Moment equations and cluster dynamics

Let us now turn to the dynamics generated by Eq.~5!.
First, we fix the initial configuration„n1(0), . . . ,nN(0)… of
the lattice and take the average of Eq.~5! over an ensemble
of different realizations. Using the statistical independen
of jN(t)W , jR(t), and the occupation numbersni(t), this
yields

ni~ t1Dt !2ni~ t !52
pR

N
ni~ t !ni 11~ t !, i 51, . . . ,N.

~9!

The quantitypR /N can be regarded as the probability tha
reaction takes place at a given sitei in the time interval
(t,t1Dt) given that sitesi and i 11 are occupied. The rate
of reaction is obtained by dividing this probability by th
time stepDt:

kR5
pR

NDt
. ~10!

To derive the continuous-time limit of Eq.~9!, we divide
both sides byDt and let this quantity go to zero in such
way that the reaction ratekR remains finite. This can be, e.g
accomplished by letting the system sizeN simultaneously go
to infinity so thatNDt5C. We shall choose the constantC
equal to unity, implying that, after one time unit, each latti
site has been visited once on average. With this choicekR
becomes numerically equal to the value ofpR . The resulting
equation reads

d

dt
ni~ t !52kRni~ t !ni 11~ t !. ~11!

In a similar way, one can obtain an evolution equation
the second-order momentni(t)nj (t). Multiplying Eq. ~5! by
nj (t1Dt) and using Eq.~7!, one finds

ni~ t1Dt !nj~ t1Dt !2ni~ t !nj~ t !

52
pR

N
ni~ t !ni 11~ t !nj~ t !2

pR

N
ni~ t !nj~ t !nj 11~ t !,

iÞ j , ~12!

which in the continuous-time limit becomes
2-3
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d

dt
ni~ t !nj~ t !52kRni~ t !ni 11~ t !nj~ t !2kRni~ t !nj~ t !nj 11~ t !.

~13!

For j 5 i 11, Eq. ~13! together with the Boolean propert
ni

2(t)5ni(t) yields

d

dt
ni~ t !ni 11~ t !52kRni~ t !ni 11~ t !2kRni~ t !ni 11~ t !ni 12~ t !.

~14!

Unless otherwise specified, we shall setpR51 for simplicity,
implying thatkR is equal to unity. Note, however, that it i
possible to absorb the reaction ratekR appearing in the time-
continuous equations~11! and ~13! in the time scale by
means of a dimensionless variablet5kRt @10,14#.

An important feature of Eqs.~11! and ~14! is that they
couple in a linear fashion moments involving only contig
ous sites. This turns out to be a generic property that a
holds for the dynamics of higher-order moments.

Let us now consider a more general subset ofk contigu-
ous lattice sitesi , . . . ,i 1k21. The probability of finding all
sites occupied at timet, i.e., a cluster of sizek, is given by
the quantity

Mk
( i )~ t !5 )

j 5 i

i 1k21

nj~ t !, i ,k51, . . . ,N. ~15!

To derive an evolution equation forMk
( i )(t), we must gener-

alize Eqs.~11! and ~14!. Taking the dynamical rule~5! as a
starting point, one obtains

)
j 5 i

i 1k21

nj~ t1Dt !2 )
j 5 i

i 1k21

nj~ t !

52 (
j 5 i

i 1k22

jN
( j )~ t !jR~ t ! )

j 5 i

i 1k21

nj~ t !

2jN
( i 1k21)~ t !jR~ t !)

j 5 i

i 1k

nj~ t !, ~16!

where i 51, . . . ,N. Taking averages in Eq.~16! for k,N,
one gets

Mk
( i )~ t1Dt !2Mk

( i )~ t !52
~k21!

N
Mk

( i )~ t !2
1

N
Mk11

( i ) ~ t !.

~17!

We now introduce the global quantity

P̄k
(N)~ t !5

1

N (
i 51

N

Mk
( i )~ t !, ~18!

representing the probability of findingk-filled adjacent sites
in the N-site lattice. Summing over the site indexi in Eq.
~17!, we find
04110
o

P̄k
(N)~ t1Dt !2 P̄k

(N)~ t !52
~k21!

N
P̄k

(N)~ t !2
1

N
P̄k11

(N) ~ t !,

k,N. ~19!

Taking the continuous-time limit of Eq.~19! for a given
finite value of k, a set of evolution equations forP̄k(t)
5 limN→`P̄k

(N)(t) is obtained:

dP̄k~ t !

dt
52~k21!P̄k~ t !2 P̄k11~ t !, k51,2, . . . ,kmax,

~20!

where the integerkmax is the size of the largest cluster. Th
first term on the rhs of Eq.~20! corresponds to a destructio
of a k-particle cluster by the interaction of two particles i
side the cluster, while the second term stands for its dest
tion by desorption of its rightmost particle, which requires
additional occupied site, i.e., a cluster ofk11 sites.

If the lattice contains only clusters of finite size, the
kmax,` and the hierarchy of Eq.~20! is truncated by the
condition P̄kmax11(t)[0. The last Eq.~20! reads then

dP̄kmax
~ t !

dt
52~kmax21!P̄kmax

~ t !. ~21!

D. Solution of hierarchy and mean coverage for microscopic
and for coarse-grained initial conditions

Suppose that we start with a given initial configurati
$ni(0)% characterized by the nonvanishing set of probab
ties

$P̄1~0!,P̄2~0!, . . . ,P̄kmax
~0!%. ~22!

Using the linearity of Eq.~20!, one can show that the solu
tion for t.0 is of the form

P̄k~ t !5exp$2~k21!t% (
j 50

kmax2k
$exp~2t !21% j

j !
P̄k1 j~0!,

k51, . . . ,kmax. ~23!

Note that fort→` only P̄1 survives, representing the prob
ability that a randomly chosen site be occupied. Clearly, t
probability is equal to the ratio between the average num
of occupied sites and the total number of sites, i.e., the m
coverage of the latticec(t). In the long-time limit, one has

c~`!5 P̄1~`!5 lim
N→`

NA~`!

N
5 (

j 50

kmax21
~21! j

j !
P̄j 11~0!.

~24!

We see that the asymptotic value of the coverage depend
all details of the initial cluster distribution. The validity o
Eq. ~24! is confirmed by MC simulations@Fig. 2~a!#. The
simulations were performed according to the time-discr
rule ~5!. The data correspond to a chain ring of 100 partic
and the initial configurations
2-4
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Let us now assume the more realistic situation in wh
the initial configuration of the system is not known in deta
but is characterized only through the particle coveragep. If
we consider a uniform ensemble of all random microsco
configurations with a givenp, the system will initially be
translationally invariant and this property will propagate
time. Thus, the probabilities of findingk consecutive filled
sitesi , . . . ,i 1k21

Pk
(N)~ t !5K )

j 5 i

i 1k21

nj~ t !L , k51, . . . ,N ~25!

~the angular bracketŝ•••& stand for the averaging over re
alizationsand initial states! will not depend on the evaluatio
site i. After averaging Eq.~17! over the initial conditions and
going over to the time continuum, one obtains

dPk~ t !

dt
52~k21!Pk~ t !2Pk11~ t ! k51,2, . . . , ~26!

which is formally identical to Eq.~20! for P̄k with kmax
→`. However, the initial conditions are now simpler. Sin
the initial occupancies of each site are statistically indep
dent, one has

Pk~0!5pk, k51,2, . . . . ~27!

A solution satisfying the initial conditions~27! can be easily
found by using an ansatz suggested in@10#. One obtains

P1~ t !5p exp@p$exp~2t !21%#, ~28a!

Pk~ t !5pk21 exp@2~k21!t#P1~ t !, k52,3, . . . .
~28b!

Again, the survival expectancyP1(t) corresponds to the
mean coarse-grained coveragec(t)5 limN→` ^NA(t)&/N. For
short times, the series expansion of Eq.~28a! yields

c~ t !5P1~ t !5p2p2t1
p2~p11!

2
t21o~ t3!. ~29!
04110
h
,

c

-

It is interesting to compare this with the short-time behav
of the exact solution of the MF equation~2!. Setting KR
51 for simplicity, one has

cMF~ t !5
p

11pt
5p2p2t1p3t21o~ t3!. ~30!

Thus, we see that the first MF deviation appears in
second-order term. For long times, one observes an expo
tial decay into an absorbing state characterized by
asymptotic coverage

c~`!5p exp~2p!. ~31!

Formulas~28! for the transient behavior and formula~31! for
the asymptotics are confirmed by time-discrete MC simu
tions @Fig. 2~b!#. As in the previous case, allPk(t) with k
>2 vanish fort→`. Note that Eqs.~28! are formally ob-
tained from Eqs.~23! by averaging over a uniform distribu
tion of microscopic states with global coveragep. This
amounts to allowing for clusters of arbitrarily large size, i.
kmax→`.

So far, we have only considered the dynamics of partic
but it is also of interest to ask for the time evolution of emp
intervals of a given size inside the lattice. Clearly, the nu
ber of empty intervals must grow as the reactions proce
To set up explicit equations for clusters of vacant si
~‘‘holes’’ !, we consider the time-discrete evolution equati
for the complementary occupation numbersi(t)512ni(t),

si~ t1Dt !2si~ t !5jN
( i )ni~ t !ni 11~ t !, i 51, . . . ,N.

~32!

By averaging this equation over an ensemble of realizati
and a uniform initial distribution of microscopic states with
coveragep one gets

dS1~ t !

dt
5P2~ t !, ~33a!

where S1(t)5^si(t)&. Equation~33a! is in agreement with
the conservation law (d/dt)@P1(t)1S1(t)#50.
2-5
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The dynamics of hole multimers can be derived start
from the evolution equation for the product)k5 i

i 1k21sk(t).
The general form of the evolution equation forSk(t)
5^)k5 i

i 1k21sk(t)& becomes more and more complicated w
increasing cluster size. The next three equations read

dS2~ t !

dt
5P2~ t !2P3~ t !, ~33b!

dS3~ t !

dt
5P2~ t !2P3~ t !1P4~ t !2P1,2

(2)~ t !, ~33c!

dS4~ t !

dt
5P2~ t !2P3~ t !1P4~ t !2P5~ t !2P1,2

(2)~ t !

1P1,3
(2)~ t !1P2,2

(2)~ t !2P1,2
(3)~ t !, ~33d!

where the quantitiesPn,m
( l ) (t) on the rhs of Eqs.~33c! and

~33d! are the joint probabilities of finding two fully occupie

FIG. 2. ~a! Mean coveragec(t)5 P̄1(t) for the four different
initial configurationsC12C4 computed from MC simulations ove
104 realizations. Both the dynamics and the asymptotic value of
coverage are in excellent agreement with formulas~23! and ~24!.
The final saturation at different coverage values reflects the de
dence on the initial conditions, and hence, the weak ergodic p
erties of the system.~b! Time evolution of the coarse-grained co
erage c(t)5P1(t) computed from MC simulations over 102

realizations for a periodic lattice of 104 sites andp50.35,0.5, and 1
~full lattice!. As in ~a!, the final saturation value depends on t
initial coveragep. Note, in addition, the monotonic dependence
all times ofc(t) as a function of the initial coveragep.
04110
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strings of lengthn andm separated byl lattice spacings. The
initial conditions for which these equations must be solv
are

Sk~0!5~12p!k, k51,2, . . . . ~34!

Equations ~33a! and ~33b! can be integrated straightfor
wardly, since the functions on the rhs are already explic
known. In Sec. III, we show how to obtain explicit expre
sions for the probabilitiesS3(t) andS4(t) by solving a gen-
eralized hierarchy for the joint probabilitiesPn,m

( l ) (t).

E. Comparison with the ME approach

An alternative way of deriving moment equations in t
framework of a time-continuous approach is provided by
master equation~ME!. Let us again consider a set ofN Bool-
ean variables$n%5(n1 , . . . ,nN) arranged on the sites of
1D lattice with periodic boundaries (nN115n1). Starting
from an arbitrary state, the evolution of the probability de
sity P($n%;t) is governed by a ME of the form

dP~$n%;t !

dt
52(

j
wj~$n%→$n8%,t !P~$n%;t !

1(
j

wj~$n8%→$n%,t !P~$n8%;t !, ~35!

where $n8%5(n1 , . . . ,12nj , . . . ,nN) and wj ($n%
→$n8%,t) is the transition rate from the state$n% to the state
$n8% at time t. To obtain an evolution equation for the ave
age occupation number

^ni~ t !&5(
$n%

ni~ t !P~$n%,t !, ~36!

we multiply Eq. ~35! by ni(t) and sum over all different
configurations$n%. This yields

d

dt
^ni~ t !&5^@122ni~ t !#wi~$n%→$n8%,t !&. ~37!

For the time evolution of the second-order moment, one g

d

dt
^ni~ t !nj~ t !&5^@nj~ t !22ni~ t !nj~ t !#wi~$n%→$n8%,t !&

1^@ni~ t !22ni~ t !nj~ t !#wj~$n%

→$n8%,t !&, iÞ j . ~38!

For the CPD, the transition rate reads

wj~$n%→$n8%,t !5kRnj~ t !nj 11~ t !. ~39!

Using Eqs.~37! and ~38! and the transition probability~39!
with kR51, one can formally recover Eqs.~11! and ~13!
averaged over an ensemble of random initial conditions.
expected, this also holds for the higher order moments@14#.
Note that in the ME approach the double averaging o
realizations and initial conditions is performedsimulta-
neouslyvia the probability distributionP($n%,t). In the CA

e

n-
p-
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model, this has been done in two separate steps. One
chooses randomly an initial condition with a givenp and
thereafter performs a series of different realizations. Ne
one again selects a new random initial condition and a n
set of realizations is carried out, and so on.

III. TRUNCATION SCHEMES AND THE ROLE OF
FLUCTUATIONS IN THE CPD

The statistical properties of theN-site CPD system are
described by the ‘‘Boltzmann-like’’ distribution function
ci 1 ,i 2 . . . ,i n

(N) (t)5^ni 1
(t)ni 2

(t), . . . ,ni n
(t)&, which can be ex-

pressed in terms of the mean occupationsci
(N)(t)5^ni(t)&

and a set of correlation functions

f i 1i 2 , . . . ,i n
(N) ~ t1 ; . . . ;tn!5^dni 1

~ t1!dni 2
~ t2!•••dni n

~ tn!&,
~40!

where dni(t)5ni(t)2ci
(N)(t). In the following, we shall

omit the superscriptN in the quantitiesc andf for the sake of
notational simplicity. Forn52 and t15t25t, Eq. ~40! de-
fines the equal-time pair correlation functionf i , j (t)
[ f i , j (t;t).

An approximate closure to the hierarchy equations can
obtained by performing an expansion in terms of correlat
functions and keeping them up to a certain order, neglec
the higher-order ones. In this so-called Ursell expansion
defines the correlation functionsf through the relations

ci , j~ t !5ci~ t !cj~ t !1 f i , j~ t !, ~41a!

ci , j ,k~ t !5ci~ t !cj~ t !ck~ t !1ck~ t ! f i , j~ t !1ci~ t ! f j ,k~ t !

1cj~ t ! f i ,k~ t !1 f i , j ,k~ t !, ~41b!

etc., where the quantitiesf i , j and f i , j ,k account for the fluc-
tuations

f i , j~ t !5^dni~ t !nj~ t !& ~42a!

f i , j ,k~ t !5^dni~ t !dnj~ t !dnk~ t !&, ~42b!

etc. Different approximations emerge from Eqs.~41! when
terms containing correlation functions of higher orders
neglected.

In the zeroth approximation all correlations between
cupation numbers are neglected and the state of the syste
completely specified by the mean occupation numbersci(t).
From Eq.~9! we have the MF equation

ci~ t1Dt !5ci~ t !2
1

N
ci~ t !ci 11~ t !. ~43!

In the first approximation the rate equation~43! is extended
with a term linear in the NN pair correlationf i ,i 11(t),

ci~ t1Dt !5ci~ t !2
1

N
ci~ t !ci 11~ t !1

1

N
f i ,i 11~ t !. ~44!

Equation~44! describes the corrections to the MF equati
~43! caused by the fluctuationsf i ,i 11(t) that are built up by
04110
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sequences of correlated reactions between the parti
These correlations are calculated from the second hiera
equation~12! with j 5 i 11. Neglecting terms inO(1/N2)
and higher in the rhs, we have

f i ,i 11~ t1Dt !52
1

N
ci 11~ t ! f i ,i 12~ t !1 f i ,i 11~ t !

2
1

N
$ci~ t !ci 11~ t !2ci~ t !@ci 11~ t !#2

1ci 12~ t ! f i ,i 11~ t !2ci 11~ t ! f i ,i 11~ t !

1 f i ,i 11~ t !% ~45!

Here the first term in curly brackets represents the propa
tion to neighboring sites of fluctuations correlated over
distance of two lattice spacings. The other terms essent
contain the correlations created or destroyed by the reac
process; the terms linear inf i ,i 11 represent the effect of ex
isting prereaction correlations, and the quantity

2
1

N
ci~ t !ci 11~ t !1

1

N
ci~ t !@ci 11~ t !#2 ~46!

accounts for the correlations created by the reaction from
completely factorized state. The other pair correlations
calculated in a similar way from Eq.~12! with j 5 i 1 l

f i ,i 1 l~ t1Dt !5 f l~ t !2
1

N
ci~ t ! f i 11,i 1 l~ t !

2
1

N
~ci 11~ t !1ci 1 l 11~ t !! f i ,i 1 l~ t !

2
1

N
ci 1 l~ t ! f i ,i 1 l 11~ t !1O~1/N2!

1higher-order terms, l 52, . . . ,@N#/2.

~47!

In the spatially homogeneous case, the system is transla
ally invariant; the solution obeys the relationci(t)5c(t) and
the correlationsf i , j (t)5 f u i 2 j u(t) depend only on the relative
distance between the evaluation sites. In the limitN→`,
Eqs. ~44!, ~45! and ~47! yield the following set of time-
continuous equations:

dc~ t !

dt
52c~ t !22 f 1~ t !, ~48a!

d f1~ t !

dt
5c~ t !2$c~ t !21%2 f 1~ t !2c~ t ! f 2~ t !, ~48b!

d fl~ t !

dt
52c~ t !@ f l 21~ t !12 f l~ t !1 f l 11~ t !#, l 52,3, . . . .

~48c!

Equations~48! can be used as a starting point for a truncat
based on the neglect of pair correlationsf l(t) for all l equal
2-7



ap
d

in

e
t

F
th
on
s

b
es
n

r-

bor

re-
on

ing

-

s
e

it

n
pair
nt
in-
f
ta-
en,

ua-
dy

ct-

-

ad
n

E. ABAD. P. GROSFILS, AND G. NICOLIS PHYSICAL REVIEW E63 041102
to or larger than a certain cutoff integerl c . For l c52, i.e., in
the pair approximation, the system of two equations
proaches the steady state (0,0), although the asymptotic
cay ofc(t) is much slower than thet21 decay prescribed by
the MF approach due to large transient effects inf 1(t) ~Fig.
3!. A log-log plot of the numerical solution suggests an
verse power law behavior ofc(t) for long times with an
exponent less than one~see inset in Fig. 3!. In the pair ap-
proximation, the stability of the MF fixed point can b
proven by geometric arguments.1 Numerical results sugges
that this property holds for any arbitraryl c , meaning that the
system truncated to any order will always attain the M
steady state of zero concentration, in contradiction with
non-MF results reported above. This reflects the n
negligibility of the three-point fluctuation correlation
f i , j ,k(t) which, as we shall see presently, indeed become
the same order of magnitude as the pair correlationsf l(t)
already for smalll.

One can compute exactly these correlation fluctuations
considering the evolution equation for the joint probabiliti
Pj ,k

( l ) (t), which in our model correspond to the distributio
functions

K )
r 5 i

i 1 j 21

nr~ t ! )
s5 i 1 j 1 l 21

i 1 j 1 l 1k22

ns~ t !L . ~49!

Taking Eq.~16! as a starting point, a tedious but straightfo
ward calculation shows thatPj ,k

( l ) (t) evolves according to

dPj ,k
( l ) ~ t !

dt
52~ j 21!Pj ,k

( l ) ~ t !2~k21!Pj ,k
( l ) ~ t !2Pj 11,k

( l 21)~ t !

2Pj ,k11
( l ) ~ t !, j ,k,l 51,2, . . . . ~50!

1This is illustrated by an analysis of the 2D velocity field.

FIG. 3. Time evolution of the mean concentrationc(t) accord-
ing to the rate equation~2! with kR51 ~curve MF!, the exact solu-
tion ~28a! ~curve ES!, and the numerical solution for the pair ap
proximation of the truncation hierarchy~48! ~curve PA!. Initially,
the lattice is assumed to be fully occupied (p51). In contrast to the
exact solution, the truncated one decays slowly to the MF ste
state. The inset shows a log-log plot of the concentration for lo
times for the MF and the truncated solution.
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The first~second! term on the rhs of Eq.~50! corresponds to
an event in which a particle inside the cluster ofj
(k)-occupied sites desorbs by interaction with a neigh
inside the cluster, while the third~fourth! term stands for the
desorption of the rightmost particle inside the cluster by
action with an occupied neighbor site at its right. Equati
~50! is solved using the ansatz

Pj ,k
( l ) ~ t !5pj 1k22 exp@2~ j 1k22!t#P1,1

( l )~ t !,

j ,k51,2, . . . . ~51!

This leads to the~infinite! coupled set of equations

dP1,1
( l )~ t !

dt
52p exp~2t !@P1,1

( l )~ t !1P1,1
( l 21)~ t !#, l 52,3, . . . ,

~52!

with the boundary conditionP1,1
(1)(t)5P2(t). An explicit ex-

pression forP1,1
( l ) (t) can be obtained from Eq.~52! by means

of a generating function@15#. The final result reads

P1,1
( l )~ t !5P1~ t !H p(

k50

l 21 F lnS P1~ t !

p D GkY k!

1F lnS P1~ t !

p D G l

/ l ! J . ~53!

This allows to compute the fluctuation correlationf l(t),
which is given by

f l~ t !5P1,1
( l )~ t !2@P1~ t !#2, l 51,2, . . . . ~54!

This function decreases superexponentially with increas
distancel, approaching zero forl→`. The three-point near-
est neighbor ~NN! fluctuation correlation h(t)
5^dnidni 11dni 12& can be expressed as

h~ t !5P3~ t !2@P1~ t !#32$2 f 1~ t !2 f 2~ t !%P1~ t !. ~55!

Formulas~54! and ~55! are confirmed by numerical simula
tions ~Fig. 4!. These also show thath(t) may already get
larger than f l(t) for l 52. In fact, the asymptotic value
h(`) and f 2(`) are of the same order of magnitude in th
whole range of the initial coveragep ~Fig. 5!. Higher-order
fluctuations become comparatively large in the dilute lim
p!1.

In the light of the above, the failure of the truncatio
scheme seems thus to be due to the fact that it includes
correlations of arbitrary long range without taking releva
higher-order fluctuations into account from the very beg
ning. Although we have only shown the non-negligibility o
correlations up to the third order, some numerical compu
tions suggest that, regardless of the initial conditions chos
it is necessary to take into account the whole set of fluct
tion correlations to obtain a deviation from the MF stea
state.

A more restrictive truncation scheme consists in negle
ing the effect of large clusters in Eqs.~26! by setting

y
g
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Pk(t)[0 beyond a given size@14#. This truncation proce-
dure yields a smooth expansion of the exact results~28! and
~31! in powers ofp.

To conclude this section, let us note that the expl
knowledge of the joint probabilitiesPj ,k

( l ) (t) can be used to
integrate Eqs.~33c! and ~33d!. The solutions of Eqs.~33!
read

S1~ t !512P1~ t !, ~56a!

S2~ t !5122P1~ t !1P2~ t !, ~56b!

S3~ t !511~231p2 1
2 p2!P1~ t !12P2~ t !2 1

2 P3~ t !,
~56c!

S4~ t !511~2413p22p21 1
3 p3!P1~ t !1~32p1 1

2 p2!

3P2~ t !2P3~ t !1 1
6 P4~ t !. ~56d!

They are shown in Fig. 6 for the case of an initially fu
lattice.

FIG. 4. Time evolution off 1(t), f 2(t), andh(t) computed from
MC-simulations over 102 realizations for a periodic lattice withN
5104 and p50.35. Asymptotically, f 2(t) is nearly an order of
magnitude smaller thanf 1(t), in accordance with the strong spati
decay predicted by formula~54!. In contrast, the three-point corre
lation h(t) is of the same order of magnitude asf 2(t).

FIG. 5. p dependence of the asymptotic ratioh(`)/ f 2(`) com-
puted from the formulas~54! and~55!. For decreasingp, three-point
fluctuations become increasingly important.
04110
t

IV. DYNAMICS OF THE CTD

The starting point is again a 1D lattice with empty~S! and
occupied sites (A). The reaction now proceeds according
the scheme depicted in Fig. 7. At each time step, one sit
randomly chosen. If the chosen site and its neighbor are
cupied,both particles will desorb with probabilitykR . The
classical rate equation reads

dc~ t !

dt
522kRc~ t !2, ~57!

which yields a faster decay than Eq.~2! to a zero-
concentration steady state, but again proportional tot21 for
long times. It is easily seen that the actual 1D system has
same steady states as the CPD system, i.e. all configura
with isolated particles. Once more, a deviation from the M
behavior is found.

To set up the corresponding microscopic evolution la
we must take into account that this time a particle at a giv
site i will also desorb if its left-neighbor sitei 21 is chosen
and it is occupied. One has, therefore, an additional con
bution in the rhs of the dynamical rule

ni~ t1Dt !5ni~ t !2jN
( i )~ t !jR~ t !ni~ t !ni 11~ t !

2jN
( i 21)~ t !jR~ t !ni 21~ t !ni~ t !, i 51, . . . ,N.

~58!

As in the CPD case, we can take Eq.~58! as a starting point
to derive evolution equations for the first- and the seco
order moments

FIG. 6. Analytical solution of the first four evolution equation
for intervals of vacant sites (p51). The quantitiesS1–S4 grow
monotonically due to the empty segments created by the react

FIG. 7. Reaction step for the CTD. In contrast to the CPD ca
both interacting particles desorb when the event takes place.
2-9
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d

dt
ni~ t !52ni 21~ t !ni~ t !2ni~ t !ni 11~ t !, ~59a!

d

dt
ni~ t !ni 11~ t !52ni~ t !ni 11~ t !2ni 21~ t !ni~ t !ni 11~ t !

2ni~ t !ni 11~ t !ni 12~ t !, ~59b!

d

dt
ni~ t !ni 1 l~ t !52ni~ t !ni 11~ t !ni 1 l~ t !

2ni~ t !ni 1 l 21~ t !ni 1 l~ t !

2ni~ t !ni 1 l~ t !ni 1 l 11~ t !

2ni 21~ t !ni~ t !ni 1 l~ t !, l 52,3, . . . .

~59c!

A generalization of Eqs.~59a! and ~59b! for strings of k
consecutive sites leads again to a hierarchy for the glo
probabilitiesP̄k(t):

dP̄k~ t !

dt
52~k21!P̄k~ t !22P̄k11~ t !, k51,2, . . . ,kmax.

~60!

Note that the prefactor of the second term is now 2 due to
additional reactive event between the leftmost particle ins
the cluster and a particle at its left-neighbor site. An equat
of the form~60! has been obtained in the context of react
isolation @7# and random sequential adsorption mod
@16,17#. In these models, the deposition of a dimer on
lattice is equivalent to the desorption of a pair of reacta
and empty pairs of sites available for deposition corresp
to unreacted pairs of reactants~see Ref.@10#!.

The solutions of the hierarchy~60! for a given initial con-
figuration read

P̄k~ t !5exp$2~k21!t% (
j 50

kmax2k
$2 exp~2t !22% j

j !
P̄k1 j~0!,

k51, . . . ,kmax. ~61!

~cf. Ref. @18#! from which the mean asymptotic coverag
follows straightforwardly

c~`!5 P̄1~`!5 lim
N→`

NA~`!

N
5 (

j 50

kmax21
~22! j

j !
P̄j 11~0!.

~62!

This result is again in excellent agreement with MC simu
tions @Fig. 8~a!#. The coarse-grained solution of Eq.~60! is
formally obtained by settingkmax5` and P̄j (0)5pj . This
yields

P1~ t !5p exp@2p$exp~2t !21%#, ~63a!

Pk~ t !5pk21 exp@2~k21!t#P1~ t !, k52,3, . . . .
~63b!
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Thus, the corresponding stationary mean coverage takes
form

c~`!5P1~`!5p exp~22p! ~64!

Note that, contrary to the CPD case, thep-dependence of the
asymptotic coverage is no longer monotonic. Thus, as l
as p.0.5, c(`) increases whenp is decreased@Fig. 8~b!#.
The initial situation of a fully occupied lattice (p51) corre-
sponds in random dimer deposition to an initially empty l
tice. In this particular case, a famous combinatorial argum
by Flory @19# predicts the valuee22 for the asymptotic mean
fraction of empty sites~in our picture, occupied sites! at
jamming, in accordance with the formula~64!.

For the CTD system, it is also possible to derive a tru
cation hierarchy by introducing fluctuation correlations
Eqs. ~59!. As in the CPD case, the second-order hierarc
yields a MF steady state, in contradiction with the exact
lution of Eq.~60!. Once more, the reason for the failure is t
non-negligibility of the three-point correlations, some
which can be computed by solving the equation

FIG. 8. ~a! Mean coveragec(t)5 P̄1(t) for a chain ring of 102

sites for the four different initial configurationsC12C4 computed
from MC simulations over 104 realizations@cf. Fig. 2~a!#. Notice,
again, the dependence of the asymptotic coverage on the in
conditions. ~b! Time evolution of the coarse-grained covera
c(t)5P1(t) computed from MC simulations over 102 realizations
for a periodic lattice of 104 sites withp50.35,0.5, and 1~full lat-
tice!. In contrast to the CPD case, the behavior ofc(t) is no longer
monotonic inp for sufficiently large times.
2-10
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dPj ,k
( l ) ~ t !

dt
52~ j 21!Pj ,k

( l ) ~ t !2~k21!Pj ,k
( l ) ~ t !2Pj 11,k

( l 21)~ t !

2Pj 11,k
( l ) ~ t !2Pj ,k11

( l ) ~ t !2Pj ,k11
( l 21)~ t !,

j ,k,l 51,2, . . . , ~65!

which is also found in models for random dimer depositi
@20#. As shown in Sec. II D, the correlation functionsPj ,k

( l )

can be used to set up explicit equations for the dynamic
vacant sites.

Finally, let us mention that it is possible to rederive t
moment equations~59! and the hierarchy~60! from a ME
analogous to Eq.~35!.

V. SUMMARY AND OUTLOOK

We have developed a one-dimensional CA model t
mimics the mesoscopic dynamics of two cooperative des
tion reactions. An important advantage of this approach
that one directly sees the effect of a small modification of
MC algorithm on the underlying moment equations. T
modeled allows us to derive a hierarchy of linear equati
from which the mean particle coverage could be compu
for both microscopic and coarse-grained initial conditio
We have seen that a truncation scheme retaining only p
fluctuation correlations fails to provide the correct behav
of these systems, due to the importance of higher-order fl
tuations. However, an alternative truncation based on
glecting the effect of large clusters in the dilute limit yields
smooth expansion of the cluster dynamics in powers of
initial coverage. In the case of the CTD, we have pointed
some analogies with models for dimer deposition.

The CDs studied here are relevant both from a theoret
and from an experimental point of view. Despite their si
plicity, they exhibit a complex non-MF behavior characte
ized by nontrivial memory effects and spontaneous order
On the other hand, a large number of physical processe
surfaces involve cooperative desorption of the produ
@21,22#. In particular, several problems in the context of e
citon dynamics in molecular crystals@23,24#, recombination
of condensed-gas radicals@25#, and bond formation in poly-
mers@7# can be mapped into the CDs. A classical exam
consists of a long polymer chain~methyl vinyl ketone!
formed by immobile radical groups that react with near
neighbors so as to form rings when the chain is heated@7#.
Clearly, some groups will be isolated by the reaction dyna
ics and will remain unreacted. In the CTD model, the un
acted groups can be identified with theA particles and the
rings correspond to pairs of vacancies left upon reaction.
quantity of interest, i.e., the fraction of unreacted grou
plays then the role of the lattice coverage.

The effect of incorporating the backward reaction stepS
1A→A1A to the CPD has been studied in Refs.@26,11,12#.
In this case, the mixing properties of the system are resto
and one attains a MF steady state. It would be desirabl
extend the present study to the reversible CTD and a
study the influence of an additional random particle inpuS
→A on the CDs.
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Another possible extension of our work consists of
creasing the range of the local interactions by allowing,
instance, interactions with next to nearest neighbors. O
expects that the system approaches the MF dynamics a
number of interacting neighbors increases. It is certai
worth to characterize this approach in a more quantita
way.

The dynamics of the one-dimensional CDs changes
nificantly in the diffusion-limited case@4,27–30#. One can
account for the mobility of the particles by introducing a
ditional diffusion terms in the dynamical rule. For the CP
this has been done in Ref.@31# for initial conditions of the
form ~27!. As expected, diffusion yields an~anomalous! de-
cay into a zero-concentration steady state. The results in
@31# have been compared to an off-lattice solution by be
Avrahamet al. @32#. Interestingly, the on-lattice solution dis
plays a slower decay of the coverage for early times due
the finite propagation velocity of a local concentration p
turbation on the lattice. A CA approach for the diffusio
limited CDs has been developed by Privman@33#. In the
Privman model, all lattice sites are synchronously update
each time step. An extension of this model for the diffusio
less CDs studied above is also worth carrying out.

A natural generalization of our calculations is to study t
dynamics of the CDs on Bethe lattices of arbitrary dimens
for which results for the cluster dynamics derived heuris
cally by Majumdar and Privman~see@10#! are available. For
the CPD, we expect to obtain results valid for physical l
tices as well by extending some expansion methods de
oped in the framework of dimer deposition@34#.

Finally, one would like to extend the boolean CA a
proach to three-state models accounting for the presenc
more than one species and, more generally, to models
playing complex MF behavior like oscillations@35–37# and
phase transitions@38,39#.
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APPENDIX A: THE SYMMETRIC CPD

In the symmetric version of the CPD model, a particle
the chosen sitelooks either at the left- or at the right
neighbor site with equal probability and desorbs if the ch
sen neighbor is occupied. In this case, the dynamical
reads

ni~ t1Dt !5ni~ t !2jN
( i )~ t !jR~ t !ni~ t !$jL~ t !ni 21~ t !

1$12jL~ t !%ni 11~ t !%, i 51, . . . ,N.

~A1!

The additional decision variablejL(t) is equal to one if the
left neighbor is chosen and zero otherwise. Clearly, the
2-11
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ditional choice between left and right may change the glo
coverage in a realization characterized by a given p

$jWN(0), . . . ,jWN(t)%. In contrast, one easily checks that ave
aging Eq.~A1! leads to the balance equations~20! and ~26!
valid for the asymmetric system. Clearly, the contributions
the destruction of a cluster by reactive events between
particles inside the cluster are the same in both models
the asymmetric model, a cluster may be destroyed by
choice of its rightmost particle, which will react with it
right-occupied neighbor with probability one. In contra
this event will only take place with probability12 in the sym-
metric model, but there is an additional such contribut
due to the reaction of the leftmost particle in the cluster w
its left-occupied neighbor. Therefore, both models will le
to the same balance equations for the cluster probabil
P̄k(t) and Pk(t). This conclusion is supported by compa
son of MC simulations performed according to the rules~5!
and~A1!. A similar argument can be applied to the symm
ric CTD.

APPENDIX B: DYNAMICS OF PARTICLE ISLANDS

The definition of a particle cluster introduced in Sec. II
was nonexclusive, meaning that a cluster of a given s
could contain smaller clusters. In the following, we will co
sider a more restrictive definition in which only isolate
strings of particles are regarded as distinct clusters. Th
‘‘particle islands’’ are characterized by the nonvanishi
product

$12ni 21~ t !%F )
j 5 i

i 1k21

nj~ t !G $12ni 1k~ t !%, ~B1!

wherek is the size of the island. In aN-site periodic lattice,
the total number of islands of sizek is given by

NI ,k~ t !5(
i 51

N

$12ni 21~ t !%F )
j 5 i

i 1k21

nj~ t !G $12ni 1k~ t !%,

~B2!

and the total number of islands isNI(t)5(k51
N21NI ,k(t) ~the

largest island can at most haveN21 sites in the ring!. With
this definition, islands can only be created, never destroy
even though their size may decrease in time. In orde
create a new island at timet, an existing one must be split u
by removal of an internal particle~not at the edge of an
island!. Therefore, the time evolution ofNI(t) will be given
by

NI~ t1Dt !5NI~ t !1(
i 51

N

jN
( i )~ t !ni 21~ t !ni~ t !ni 11~ t !.

~B3!

In the limit t→`, the iteration of this formula yields the tota
number of particlesNA(`) in the steady state
04110
l
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o
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e

se

d,
to

NA~`!5NI~`!

5NI~0!

1(
j 50

`

(
i 51

N

jN
( i )~ j Dt !ni 21~ j Dt !ni~ j Dt !ni 11~ j Dt !.

~B4!

The validity of this formula for the asymptotic coverage i
duced by a single realization can be easily checked num
cally.

Following Sec. II D, we now consider an ensemble
realizations starting from the same initial condition. T
probability of finding an island ofk consecutive sites can b
defined in a similar way toP̄k(t):

Ī k
(N)~ t !5

NI ,k~ t !

N
5

1

N (
i 51

N

Lk
( i )~ t !, k51, . . . ,N21.

~B5!

with

Lk
( i )~ t !5$12ni 21~ t !% )

j 5 i

i 1k21

nj~ t !$12ni 1k~ t !%. ~B6!

After some algebra, one obtains

Ī k~ t !5 P̄k~ t !22P̄k11~ t !1 P̄k12~ t !. ~B7!

Thus, once the solution for the set ofP̄k(t) is known, it is
easy to determine the time evolution for the islands. A sim
lar relation is found for coarse-grained initial conditions.
the continuous-time limit, one has

I k~ t !5K $12ni 21~ t !% )
j 5 i

i 1k21

nj~ t !$12ni 1k~ t !%L
5Pk~ t !22Pk11~ t !1Pk12~ t !

5@122p exp~2t !1p2 exp~22t !#Pk~ t !. ~B8!

Note that I 1(t) increases monotonically in time since th
number of isolated particles always increases. The situa
is less obvious for multiparticle islands~Fig. 9!. If the initial
coverage is high enough, their number will first be increas
due to the breaking of larger islands, however, they w
sooner or later be themselves reduced to single-particle
lands by the ongoing reactions.

The situation is slightly different in the CTD, since two
particle islands can indeed be destroyed. The evolution
NI(t) in a single realization is given by

NI~ t1Dt !5NI~ t !1(
i 51

N

jN
( i )~ t !ni 21~ t !ni~ t !ni 11~ t !ni 12~ t !

2(
i 51

N

jN
( i )~ t !$12ni 21~ t !%ni~ t !ni 11~ t !

3$12ni 12~ t !%. ~B9!
2-12
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The first term describes the creation of a new island by
action of two internal particles, while the second term sta

FIG. 9. Time dependence ofI 1(t), I 2(t), andI 3(t) according to
formula ~B8! for an infinite, initially full chain (p51).
ep

tt

ys

04110
for the destruction of a two-particle island. The total numb
of particles in the steady state can be written as

NA~`!5NI~0!1(
j 50

`

(
i 51

N

jN
( i )~ j Dt !ni~ j Dt !ni 11~ j Dt !

3$ni 21~ j Dt !1ni 12~ j Dt !21%. ~B10!

The dynamics of the islands can be easily determined
using the relations~B7! and ~B8!, which also hold in this
case.
ys.
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